modern atom teorisi

aSLihaN

New member
Çok kısa biLiorum ama bu var :(

Modern Atom Kuramı (1920-1930 )
Modern atom kuramı, tümüyle kuantum kuramı temeli üzerinde yükseliyor. Artık modellenemeyen bir “matematiksel” betimlemenin içinde düşünmemiz gerek. Bu kuram, öncelikle çekirdek çevresindeki elektron “davranışı”nı belirler.
Elektron, bulunduğu zaman tümüyle bir parçacık olarak kavranmıştı. Ama sonraları, onun aynı zamanda bir dalga özelliği taşıdığı anlaşıldı. Elektron nedir? Parçacık mı? Evet. Dalga mı? O da evet! Peki çekirdek çevresindeki elektronların bulunduğu uzay parçalarını blliyor muyuz? Evet. Onlara orbital diyoruz. Orbitaller s,p,d ve f harfleriyle simgeleniyor. Niels Bohr, elektronların her enerjiyi değil,belirli enerjileri alabildiğini benimseyerek yeni atom kuramını geliştirmişti. Bohr, çok elektronlu atomların karmaşık tayf çizgilerini ise açıklayamıyordu.
Bir elektrik alan, bir atomun tayf çizgilerini, değişik frekanslarda,birkaç çizgiye daha ayırır(Stark Olayı)Bu da Bohr kuramı için bir bilmeceydi.
Atomların ışıması bir manyetik alan içinde incelendiği zaman oluşan tayf çizgilerinin herbirinin bir kaç çizgiye ayırılması olayına “yarılma” denir. Çizgilerin ayrıklığı manyetik alanın şiddetine bağlıdır. Bir manyetik alanda tayf çigilerinin yarılması olayını 1896’da Hollandalı fizikçi Pieter Zeeman (1865-1943) keşfetti. Zeeman olayı, uzay kuantumlanmasının etkili bir kanıtıdır.
Modern Atom Kuramının temeli üç büyük adıma dayanır:
1.Parçacıkların dalga özelliği göstereceğinin kestirilmesi, Louis de Broglie,1924.Broglie, o zamana dek birbirinden ayrıymış gibi duran iki eşitliği Planck eşitliği(E=hf) ile Einstein eşitliğini (E=mc2) birleştirdi,her parçacığın bir dalga özelliği taşıması gerektiğini açıkladı.
2. Dalga mekaniğinin yani Schrödinger dalga denklemi denen denklemin keşfi. Erwin Schrödinger,1926.
Schrödinger 1926 yaz aylarında dalga denklemi türetti. Dalga denklemine göre,örneğin, hidrojen atomunda elektronun konumu kuantize değildir, bu bakımdan,elektronun çekirdek civarında,birim hacim başına belli bir bulunma olasılığını düşünmemiz gerekir. Fakat öngörülebilen hiçbir konum, hatta klasik anlamda yörünge söz konusu değildir. Bu olasılıkçı söylem, hidrojen atomu üzerinde yapılan deneylerin, atomun bir bütün elektron (belirli bir bölgede bir elekronun yüzde 27’sini başka bölgelerde yüzde 73’ünü değil) içermekte olduğunu göstermesi gerçeği ile çelişmez; olasılık, elektronun bulunması ile ilgilidir ve her ne kadar bu olasılık uzayda dağılmış ise de elektronun kendisi dağılmış demek değildir.Madde dalgalarının gerçek dalgalar değil,dalga genliğinin karesiyle belirlenen olasılıkçı yorumunu Max Born yapmıştır. Ancak Schrödinger ve Einstein bu yoruma katılmamıştır.Ançak geçen zaman Born'u haklı çıkarmıştır.
3.Belirsizlik ilkesinin keşfi. Heisenberg,1927.
Elektronun yerini ve hızını aynı anda belirlemede sorun var mı? Var. Elektronun yerini belirleme konusunda yüzdeler veriyoruz. Elektron yüzde 90 olasılıkla şu atomik uzayda bulunabilir diye hesaplarımızın sonucunu veriyoruz. Bu olasılık, her ne kadar uzaya dağılmış ise de elektronun kendisi dağılmış demek değildir.
Elektronun atom içindeki yerini ışık kullanarak belirleyebiliriz. Belli dalga boyu olan bir ışıkla aydınlattığımız zaman,o dalga boyundan daha küçük ayrıntıları seçemeyiz. Bu iyi bilinen bir olgudur. Gerçekten badana fırçası ile bir İran minyatürü yapılamaz!
Elektronun yerini “görmek” istediğimizde “gördüğümüz yer” ,onun gerçek yeri değil de “fotonla itildiği yer” olacaktır. Burada kullanılan ışığın dalga boyu düzeyinde bir belirsizlik vardır. Bu belirsizlik, hiçbir zaman sıfıra indirilemeyecektir.
Benzer sorun elektronun hızını ve ona bağlı olan momentumunu belirlemede de karşımıza çıkıyor.
Uzatmayayım. Elektronun yerini ve momentumunu asla tam bir kesinlikle belirleyemeyiz. Bu konuda olasılıklar düzeyinde konuşabiliriz. Evet,elektronun çekirdek çevresinde bulunabileceği olası bölgeleri bilebiliyoruz. Elektronun olası ve ortalama hızını ve dolaysıyla momentumunu bilebiliyoruz. belirsizlik ilkesi Ama bunları tam bir kesinlikle bilemiyoruz. Tam bir kesinlikle bilemediğimiz çok şey var. Bunları sorun etmeyin. Çünkü en yetkin bilim adamları bile bunları kesinlikle bilmiyor! Bu da belki daha alçakgönüllü olmamız için gerekli bilgiler.
Orbital, matematiksel bir fonksiyon olmakla birlikte, ona fiziksel anlam vermeyi deneyebiliriz: Eleketronu tanecik olarak düşünürsek orbital, atom içerisinde elektronun bulunma olasılığı yüksek bir bölgeyi simgeler. Elektronu bir maddesel dalga olarak düşünürsek orbital elektron yük yoğunluğu yüksek olan bölgeyi gösterir. Elektron “tanecik” olarak kabul edildiğinde,elektronun belirli noktalarda bulunma olasılığından ;elektron “dalga” olarak kabul edildiğinde ise, elektron yük yoğunluğundan söz ederiz.
Yani elektronun konumu kuantize değildir,bu bakımdan,elektronun çekirdek çevresinde,birim hacimdeki bulunma olasılığını(dalga genliğinin karesine,yani dalga şiddetini) düşünmemiz gerekiyor. Dalganın şiddeti (genliğin karesi) bir bölgedeki foton sayısına,yani foton yoğunluğuna bağlıdır(atominsan.com)
Kaynakça
1. Beiser,Arthur; Çağdaş Fiziğin Kavramları,Diyarbakır ,2.Baskı (1989)
2.Feynman, Richard P., Kuantum Elektrodinamiği (1985),Nar yayınları(1993),Çev: Ömür Akyüz
3.Gamow,George, Bay Tomkinsin Serüvenleri (1940/1965),Evrim yay,Çev: Tuncay İncesu(1998)
4.Petrucci ve Harwood, Genel Kimya, Çeviri editörü: Tahsin Uyar, Palme yayı,Ankara 1994
 

seykan

New member
Modern Atom Modelleri ve Tarihçelerİ Thomson Atom Modeli
J. J. Stoney’ın elektronu keşfinden sonra, J.J.Thomson 1897 yılında katot ışınlarının magnetik ve elektrik alanlarında sapmalarını gözleyerek elektronlar için yük/kütle (e/m) oranını saptamayı başarmıştır. Bu amaçla Thomson aşağıdaki şekilde görülen katot ışınları tübüne benzer bir tüp kullanmıştır.

Cihazın Çalışması : Başlangıçta herhangi bir elektriksel ve magnetik alan yokken delikten geçen ışın A noktasına düşer. Işığın doğrultusuna dik bir magnetik alan uyulanırsa ışın yolundan sapar ve A noktasından r kadar uzaklaşır. Ve B noktasında bir ışıldama meydana gelir. Magnetik sapmayı sağlayan kuvvet; magnetik alan şiddetine, elektronun yüküne ve hızına bağlıdır.

F = HeV (1) H : Magnetik alan şiddeti
e : elektronun yükü
v : elektronun hızı
elektronun dairesel hareketi için etkiyen kuvvet ise

F = mv2/r (2) m : elektronun kütlesi

v : elektronun hızı
olduğundan 2 kuvvet birbirine eşitlenirse ve e/m oranı
e/m = v/Hr (3)

olarak belirlenebilir. Denel olarak r ve H büyüklüğü ölçülebilir. Fakat elektronun hızı ölçülemez. Elektronun hızı belirleyebilmek için Thomson magnetik alanın saptırmasını tam olarak karşılayabilcek elektrik alanı uygulayarak B noktasına düşen demeti A noktasına geri kaydırmıştır. Bu elektrik ve magnetik kuvvetlerin eşit olması anl----- gelir.

Hev = eE (4) E : elektrik alan
Buradan v = E/H yazılabilir. Bu sonuç 3 nolu eşitlikle birleştirilirse
e/m = E/H2r (5)
yazılabilir. e/m oranı bu şekilde –1.7588´1011 C/Kg olarak belirlenmiştir.
J.J. Thomson döneminde atomların kütleleri ve yarıçapları yaklaşık olarak biliniyordu. Thomson bu çalışmaları ile atom içersinde negatif yüklü ve atomdan çok daha küçük parçacıkların bulunduğunu göstermiştir. Ve kendi adı ile anılan atom modelini önermiştir. Bazen bu modelden bahsedilirken üzümlü kek modeli de denilmektedir. Modele göre; Madde, küre şeklindeki atomlardan oluşmuştur. Atomda negatif yüklü elektronlar vardır. Ve elektronların kütlesi atomun kütlesinden çok küçüktür. Elektriksel nötralliği sağlamak için atomun geri kalan kısmı pozitif yüklü olmalıdır. Pozitif yük kütlenin çok büyük bir kısımını oluşturduğuna göre atom, artı yüklü kütlenin homojen olarak dağıldığı bir küredir. Elektronlar bu küre içinde elektriksel nötralleşmeyi sağlayacak şekilde serpilmişlerdir.

RUTHERFORD ATOM MODELİ
Ernest Rutherford, fotoğraf plakası ile çevrilmiş yarım mikron kalınlığındaki bir altın plakayı alfa tanecikleri ile doğrusal olarak bombaladığında, alfa taneciklerinin çoğunun yön değiştirmeksizin altın plakasının arkasında kalan fotoğraf plakasına ulaştığını gözlemledi. Bununla beraber bazı alfa taneciklerinin ise büyük açılarla sapmaya uğradıklarını gözlemledi (Animasyon 1). Rutherford tarafından kullanılan altın plakanın kalınlığı yaklaşık olarak 2000 atomdan oluşuyordu ve alfa taneciklerinin çoğu arkadaki fotoğraf plağına ulaştığından altın atomları büyük boşluklardan oluşmalıydı. Kimi alf ataneciklerinin sapmaları çok fazla olmasının nedeni atomun bir yerinde pozitif yüklü alfa taneciklerini saptırabilecek güçte büyük kütleli bir bölge bulunmalıydı (Şekil 2). Rutherford bu deneylerden sonra çekirdekli atom kuramını 1911 yılında açıkladı.
Rutherford yaptığı deneylere göre bu pozitif yüklü çekirdeğin atomun çapına göre onbin kat daha küçük olduğunu öne sürdü. Bugünkü bilgiler göre çekirdek çapı yaklaşık olarak 10–13 cm kadardır. Rutherford atomu bir güneş sistemine benzeterek atom çekirdeğini güneşe, elektronları da gezegenlere benzetmiştir. Çünkü deney sonuçlarında anlaşıldığına göre elektronlar atom çekirdeği etrafında bulunuyorlarsa, çekirdeğe düşmemek için çekirdek etrafında dönmek zorundaydılar ve onları çekirdeğe çeken coulomb çekim kuvvetine denk bir merkezkaç kuvveti ile hareket etmeleri gerekiyordu. Böylece elektronlar gezegenler gibi yörüngelerinde bulunacaklardı (Animasyon 2).

Rutherford Atom Modelinin Eksik TaraflarıRutherford atom modeli ilk bakışta iyi görülse de modelin ayrıntıları üzerinde durulmaya başlanırsa bazı eksik noktaların bulunduğu görülür. Rutherford atom çekideğinin protonlardan oluştuğunu öne sürdü fakat tek pozitif yüke sahip hidrojen çekirdeğinin neden iki pozitif yükse sahip helyumdan dört kat daha ağır olduğunu anlamak zordu. Gerçi Rutherford atom çekirdeği içinde protondan başka türler olabileceğini düşündü ama 1932 yılında Chadwich nötronu keşfedinceye kadar bu konu karanlık kaldı.
Fakat Rutherford atom modelinin eksik tarafı dediğimizde bu anlaşılmaz. Bu atom modelinde asıl anlaşılmaz olan başka şeyler sözkonusuydu.
Eğer elektronlar coulomb çekim kuvvetlerini karşılayacak büyüklükte sabit bir açısal hızla çekirdek etrafında dönmesi sabit bir ivmesinin olması gerektirir. İvmenin varlığı ise, kuvvetin, momentumun, ve kinetik enerjinin varlığı demektir. Bu nedenle elektromagetik enerji taşıyan elektronlar, atmosferde enerji kaybeden yapma bir uydunun dünyaya düşmesi gibi çekirdeğe çakılmalıdır. Enerjisini, ışıma yolu ile kaybederek elektronun bir spiral bir yörünge üzerinden çekirdeğe düşme süresi yaklaşık olarak 10-11 saniye kadar olacaktır. Bu süre atomu bizim boyutlarımız içinde kararlı yapamayacak kadar kısadır. Bu nedenle model elektromagnetik ışıma hakkındaki bilgilerimizle çelişki oluşturmaktadır.
Atomlar tarafından ışığın yayılması rutherford atom modeline uyar fakat aynı zaman da bu modeli bozar. Çünkü biz atomların yaydığı ışığı görmeden çok önce, atomlar çekidek boyutuna kadar büzülmüş olmalıdır. Bu nedenle normal bir atomda elektronlar çekirdeğin üzerine düşmüş ve saplanmış olmaları gerekir. Fakat bu düşünce alfa tanceciklerinin saçılması olayına tam ters düştüğü gibi, gazlardaki çarpışmalardan ve katı ve sıvılardaki atom istiflenmelerinden hareketle elde edilen atomik büyüklüklerde de uyuşmayacaktır.
Rutherford atom modelinin diğer bir hatası da spektrum analizi ile çelişkiye düşmesidir. Atom tarafından yayılan ışığın frekansı elektronun çekidek çevresinde bir saniyedeki dönüş sayısına bağımlı olacaktır. Daha küçük yörüngelerde dönen elektronların dönme peryodu daha küçük dolayısıyla yaydıkları ışığın frekansı da daha büyük yörüngelerdeki hareket eden elektronların yaydıkları ışık frekansına göre daha büyük olacaktır. Bir elektron ışıma yaptıkça enerji kaybedeceğinden yörünge çapı da gittikçe küçülmelidir. Böylece yaydığı ışığın frekansı gittikçe artmalıdır. Bir ışık kaynağında birden çok fazla sayıda atom vardır ve bu atomlardan bazıları ışık yayma işleminin bir basamağında iken, diğerleri başka basamaklarda bulunabilir. Böylece pratik olarak bütün dalga boylarında ışık yayması beklenir. Örneğin bir elektrik boşalması ile ışıklı hale getirilmiş hidrojen gazının sürekli bir ışık spektrumu vermesi beklenir. Halbuki beklenenin tersine, hidrojen ışığının spektrumu analiz edildiğinde belirli sayıda keskin çizgiler yani farklı farklı dalga boyları gözlenir
Bu spektrumlar atomların parmak izleri gibidir. Uzak yıldız ya da galaksilerdeki atomlar ve miktarı bu tür spektrumlar kullanılarak saptanmaktadır ve bu uygulamlardan yalnızca biridir.

Rutherford atom modelinin başka bir hatası da atomu güneş sistemine benzetmesiydi. Bunun nedenini daha iyi anlayabilmek için hidrojen atomunu düşünelim.Hidrojenin elektronunun döndüğü yörüngenin çapını r, açısal hızını , elektronun kütlesini m, elektron ve çekirdeğin yükleri e ve -e kadar olacağından, merkezkaç kuvveti için ve Coulomb çekim kuvveti için yazılabilir. Denge hali için olacaktır ki denklemden de görüldüğü gibi herhangi bir r değeri için elektronun açısal hızı bulunabilecektir. Böylece birbirinden çok farklı atomik çaplara sahip hidrojen atmları bekleyebiliriz. Bu sonuç hidrojen atomlarının ne fiziksel nede kimysal davranışlarında gözlenmez ve tüm hidrojen atomları büyküklükleri açısından birbirlerine benzerler. Bütün bu farklılıklar Rutherford atom modelinin eksik taraflarıdır.

BOHR ATOM MODELİ
Niels Hendrik Bohr, Rutherford atom modeli ile Planck’ın kuantum teorisini kullanarak 1913 yılında yeni bir atom modeli öne sürdü. Bu yeni model Rutherford modelinin açıklayamadığı noktalara ışık tutuyordu. Bohr’un atom teorisi 3 temel varsayıma dayanır.
1. Bir atomda bulunan her elektron çekirdekten ancak belirli uzaklıklardaki yörüngelerde bulunabilir. Her yörünge belirli bir enerjiye karşı gelir ve elektron yörüngelerden birinde hareket ederken enerji kaybederek çekirdeğe doğru yaklaşmaz.
2. Yüksek enerji düzeyinde bir elektron düşük enerji düzeyine inerse enerji düzeyleri arasındaki enerji farkına eşit enerji yayınlanır.
3. Elektronlar çekirdek çevresinde dairesel yörüngeler izlerler ve elektronların açısal momentumları ancak belirli değerler alabilirler. Bu değerler planck sabitine bağımlıdır.
Bu yaklaşımlarla Bohr spektrumlardaki çizgileri ve Rutherford atom teorisinin açıklayamadığı diğer noktaları açıklamayı başardı

BOHR YÖRÜNGELERİNİN YARIÇAPI
Bohr’un bu modeli H atomu, He+, Li+2, Be+3 iyonları gibi tek elektronl sistemlerin spektrumlarını kolyca açıklayabilmektedir. Bu tip türlerin atomik yarıçaplarının ne kadar olduğunu hesaplamaya çalışalım.
Elektron atom çekirdeği etrafında hareket ederken Coulomb çekme kuvveti ve merkezkaç kuvveti etkisi altındadır. Elektron sürekli aynı yörüngeyi izlediğine göre bu iki kuvvet birbirine eşit olmalıdır.
(1)
Yukarıdaki eşitlikten r değeri
(2)
olarak elde edilebilir. Ayrıca Bohr varsayımına göre bir elektronun açısal momentumu (mvr), nin katlarına bağlı değerler alacaktır.
(3)
olup buradan ;
(4)
kadar olacaktır. Son bağıntı; 2 nolu bağıntıda yerine konursa;
(5)
bağıntısı elde edilmiş olur.
BOHR YÖRÜNGELERİNİN ENERJİSİ
Atom çekirdeği etrafında dairesel yörüngelerde hareket eden elektronlar kinetik ve potansiyel enerjilere sahiptirler. Bu nedenle çekirdek etrafındaki elektronun enerjisi için
(6)
CGS sisteminde olduğundan
(7)
yazılabilir. (1) nolu denklem hatırlanacak olursa;
(8)
ifadesi yazılabilir. Bu da 7 nolu eşitlikte yerine konulacak olursa
(9)
elde edilebilir. (5) nolu eşitlikteki r yerine konursa
(10)
ifadesi elde edilebilir. Bu formül n nin çeşitli değerleri için elektronların bulundukları enerji seviyesinde sahip olabilecekleri toplam enerjiyi verir.
Bohr’un ikinci varsayımını hatırlarsak elektronun enerji seviyesini değiştirmesi sırasında kaybedeceği enerji
(11)
kadar olacaktır. Böylece 10 nolu denklemi kullanarak atomdan yayılan radyasyonun dalga boyu veya atom tarafından yutulacak dalga boyu kolayca hesaplanabilir. Dalga sayısı olduğu söylersek
Hidrojen atomu için

yazılabilir. Burada , Rydberg sabiti (R) olarak gösterilir ve değeri 109677,581 0.007 cm-1 dir.

BOHR TEORİSİNİN EKSİK TARAFLARI
Bohr modeli rutherforad atom modeline göre oldukça üstün tarafları olsa da bu kuramında eksik yönleri söz konusudur.
Elektronun, maddesel nokta şeklinde düşünüldüğünden, yörünce üzerinde enerji yayımlamadan dönüşleri, yörüngeden yörüngeye atlayışı ve açığa çıkan enerjinin ışıma halinde alınıp verilmesi açıklanması kolay olmayan bir durumdur.
Bohr atom modeli yalnızca tek elektronlu sistemlerin spektrumlarını açıklayabilir. Ve çok elektronlu sistemlerin spektrumlarıı açıklamakta yetersiz kalır. Çok elektronlu atomların spektrumlarında enerji düzeylerinin herbirinin iki ya da daha fazla düzeye ayrıldığı görülmektedir.
Yine hidrojen gazı, bir elektrik alanı veya magnetik alanda soğurma spektrumları incelenirse, enerji düzeylerinin çok elektronlu sistemlerde olduğu gibi iki ya da daha fazla enerji düzeyine ayrıldığı görülür.
 

HTML

Üst